Tool Suite To Reduce Cost of Testing For Nanometer Technology ASICs

Today, integrated chips with multi-million gates, containing logic, memory and analog functions are becoming commonplace. At the same time, meeting tight time-to-market schedules, controlling costs and maintaining high quality standards are critical to the success of any such new development. Further, nanometer technology has become a reality.

However, cost of semiconductor testing has been increasing steadily over the past few years making it a major part of the overall manufacturing cost of chips. The increase in size and complexity of new chips calls for a radical approach to enable companies developing million-gate ASICs to speed their products through the test process more rapidly without having to upgrade to more expensive, latest generation Automatic Test Equipment (ATE) or to expand pin-electronics on existing ATE.

For ASICs designed with feature size greater than 130 nm, testing for stuck-at faults and I_{DDQ} is adequate to ensure acceptable quality levels. However, in ASIC’s designed for 130 nm or below, many manufacturing defects are no longer static. They become delay defects and it becomes necessary to use delay tests to detect the transition faults and path delay faults. Often bridging tests are also required. Since these delay tests are more complicated than tests for stuck-at faults, many more test patterns are required resulting in more time on ATE and more memory to store patterns. The end result being increased test cost. It is in this environment that UltraScan together with VirtualScan help in reducing the cost of ASIC testing.

UltraScan with its Time-Division De-Multiplexing (TDDM) and Multiplexing (TDM) circuits is able to take advantage of the unutilized bandwidth available on high-speed channels on the ATE during low speed scan-shift operation, and thereby offer overall shorter load times of scan chains.

Benefits of UltraScan™ with VirtualScan™

- Reduces test data volume of semiconductor testing – 5x to 50x
- Reduces test time – 50x to 500x
- Extends life of existing ATE for large SOC designs
- Reduces test time for all scan designs with ATPG compression structures
- A small number of high-speed I/O pads are adequate to run a scan ATPG test for a design with a large number of internal scan chains of shorter length
- Pin reduction realized through TDDM/TDM circuitry
- Overall shorter test load times by taking advantage of the unutilized bandwidth available on high-speed channels on the ATE during low-speed scan-shift operation
- High fault coverage
- Better delay fault coverage for high-speed I/O pads on the device
- Short test development time with no iterations
- Predictable & low hardware overhead
- Smooth migration into existing scan ATPG flow
- Diagnosis support

Furthermore, today’s ASIC designs operate at significantly higher speeds and require that their high-speed I/O pads are tested at proper resulting in higher test cost. Hence, any method for testing these high-speed I/O pads “at-speed” by utilizing bandwidth available on high-speed channels on the existing ATE helps towards reducing test costs. Here again UltraScan helps in this speed test of high-speed I/O pads, and at the same time it assists in preserving test structures used for test data volume compression. Through the pin reduction realized with TDDM/TDM, a small number of high-speed I/O pads are sufficient to run a scan-ATPG test for a design with a large number of internal scan chains of shorter length.

Thus, UltraScan is primarily used with SynTest’s VirtualScan product to further reduce test application time. SynTest’s VirtualScan itself offers a significant reduction in the cost of semiconductor testing by reducing test data volume and test cycle volume by 5x – 50x, thereby reducing the necessity of adding expensive memory on ATE. An evaluation on a 4.2-million gate circuit showed a reduction in test time of 18.7x through VirtualScan and an additional reduction of 10x through UltraScan, giving a total reduction in test time of 187x.
The UltraScan Architecture

The UltraScan architecture consists of three major parts:

- A Time-Division De-Multiplexing (TDDM) circuit placed between high-speed I/O pads for driving scan chains and the internal VirtualScan broadcaster input ports
- A Time-Division Multiplexing (TDM) circuit placed between the internal VirtualScan compactor output ports and high-speed I/O pads to bring out scan chains
- VirtualScan broadcaster and compactor circuits

The TDDM, TDM, broadcaster and compactor circuits are generated as Register Transfer Level (RTL) blocks. These RTL blocks are then synthesized along with the design RTL codes and other DFT RTL blocks into a gate-level netlist. As these blocks are at RTL, it eases the overall design floor planning decisions carried out at the RTL stage.

The TDDM circuit uses a high-speed clock to demultiplex the high-speed scan data into scan data operating at a slower data rate for scan shift.

Following the TDDM circuit, the VirtualScan broadcaster is used to broadcast the scan data into multiple VirtualScan scan chains depending on the split ratio. This allows designers to compress the test data volume and test cycles used to test the device. This compression comes on top of the test cycle reduction, measured using the scan shift clock, due to the time-division demultiplexing of the high-speed scan data.

The compactor to compact the captured scan data follows the VirtualScan scan chains. The outputs of the compactor are then used to drive the TDM circuit, which is again operated at the high-speed clock, to multiplex the captured scan data back into high-speed captured scan data for comparison on the tester. This circuit architecture allows designers to achieve further reduction in test cycles, measured using the scan shift clock, on top of the VirtualScan test cycle and test data volume reduction, further reducing the test cost.

VirtualScan uses an enhanced, proprietary scan ATPG technology to generate compressed test patterns. It provides a fast combinational ATPG that enables very high fault coverage to be achieved.

Features of VirtualScan™

- Patented, proprietary VirtualScan technology for broadcasting external scan chains (ATE channels) to many more – user defined - number of shorter internal scan chains and compacting them back into original number of external scan chains.
- Outputs complete virtual scan netlist
- Uses an enhanced virtual scan ATPG
- Static and dynamic compaction of ATPG patterns
- Advanced multiple clock domain handling using proprietary multiple-capture-per-cycle scheme
- Can be used with scan chains inserted using third party tools
- Fully compatible with SynTest’s existing DFT tools as well as TurboDiagnosis product line for debug, diagnosis, and failure analysis of scan chains.